

Advanced Technical Skills (ATS) North America	
Bibliography	
Ray has spent most of his career at IBM in the performance and capacity planning end of the business in Poughkeepsie, and now at the Washington Systems Center. He is the majo contributor to IBM's internal PA & CP tool zCP3000. This too extensively by the IBM services and technical support staff of to analyze existing zSeries configurations (Processor, storage I/O) and make projections for capacity expectations.	analysis , London, r ol is used world wide ge, and
Ray has given classes and lectures worldwide. He was a vis scholar at the University of Maryland where he taught part ti Honors College.	siting me at the
He won the prestigious Computer Measurement Group's A./ Michelson award in 2000. His recent virtual sessions "Gettin in Performance Analysis & Capacity Planning" workshop hel attendees in China and India was well accepted.	4. ıg Started Id for
	© 2010 IBM Corporation

Advanced Technical Skills (ATS) North America	INM
Abstract	
This tutorial is a two part introductory level session designed to introduce the student to the concepts required for Performance Analysis and Capacity Planning.	
Emphasis is placed on large processor systems and examples will be largely drawn from z/OS but the concepts apply to all operating systems and hardware. The tutorial is organized to review the architecture where appropriate (albeit briefly). Topics:	
 Conceptual and Perceptual structures for performance analysis and capacity planning, 	1
Using the Forced Flow law in PA & CP	
 Performance Analysis queries for capacity planning, 	
Processor performance data (ITRRs & MIPS),	
 Resource Metrics for use in the Balance System model, 	
 Sample selection, 	
 Data preparation in z/OS, 	
 Using the utilization growth process in capacity planning, 	
© 2010 IBA	l Corporation

Advanced Technical Skills (ATS) North Ame	rica
Establish Power value in M	IPS?
Reference-CPU	Reference-CPU
C 2PCR V7.1a	C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Reference-CPU zPCR Global Setting Only 1-way GP processor models are allowed Study ID: Not specified Processor Model and Capacity Assumption Family 29 EC/700 V Model Scaling-Factor Scaling-Metric 2094-701 V 1.00 (ITR Ratio) V	Reference-CPU zPCR Global Setting Only 1-way GP processor models are allowed Study ID: Not specified Processor Model and Capacity Assumption Family 29 EC/700 Model Scaling-Factor Scaling-Factor Scaling-Metric 2094-701 593
Some Alternative Settings	Some Alternative Settings
	© 2010 IBM Corporation

Advanced Technical Skills (ATS) North America								
Processor Power:	zPCR							
Configuration Input Manual RMF Listing EDF file (CP3KEXTR) 	Partition Detail Report (untilled) Cash Of Volumentation SPCR V7.1a Partition Detail Report Based on ISPR Data for IBM System 1 Processos South Die New sounded ZiO-EC Host = 20097-ES6/700 with 39 CPs; GP=20 ZAAP=1 ZIIP=8 ICF=2 17 A fc/twp Partitions (GP=5 ZAAP=5 ZIIP=5 ICF=2) Capacity is based on a 2004-701 assumed at 593.00 MIPS for a 1-partition configuration top of and 10 processor as analytic for a 1/0 partition configuration top of the Investor and analytic ratio (GP) is represented with the efforts of the trade (ON)							
	Partition Identification Partition Configuration Partition Capacity							
	Include No. Type State SOP Weeklad Mode C/P Weeklad Mode C/P Weeklad Mode Cop Mode L3 387 Mode L5,000 L5,000 <thl5,000< th="" th<=""><th>3x850 7,316 3,058 6,745 1,261 3,073 725 601 766 901 24,303 24,303</th></thl5,000<>	3x850 7,316 3,058 6,745 1,261 3,073 725 601 766 901 24,303 24,303						
	Host Summary Modity SCP/Woldbad Calbquies Reference-CRU For significant configuration changes, capacity comparisons should be considered to have a +f-0% sargh-of-error Lippaking the processor lawly is considered a significant configuration change. Note: One or more partition rendices and the processor lawly is considered a significant configuration change. Note: One or more partition rendices indicate one capacity that can be provide with LCPS defined Indicate the processor lawly is considered a significant. Indicate the one partition rendices that can be provide with LCPS defined Indicate the provide with lawly of the open.							
© 2010 IBM Corporation								

		Advar	nced Tecl	nnical Skil	ls (ATS) N	orth Ameri	ca	l	
	Proc	cess	or P	ower	: zPC	R			
	Deuk	··· •	C		Deutitien	£	1	_	
	Parti	ition Lon	figuratio	ו י	Partition	Lapacity			
	LCPs	Weight	Weight %	2 Capping	Minimum	<u>Maximum</u> .	-	-	— Maximum [.] MIPS available if
_	12	387	38.70°	%	6,606	7,316	^	•	ath an nortition of a valid of in
_	6	84	8.409	%	1,512	3,858			other partitions are idle
_	11	311	31.109	/o 📃	5,339	6,745			given logical configuration.
_	2	26	2.60°	% 📃	459	1,261			5
_	6	192	19.209	%	3,389	3,783			<pre></pre>
_	1	260	26,459	% 📃	178	673			<u>Minimum</u> : MIPS entitled to if
_	1	87	8.859	%	64	726			other partitions are
_	1	414	42.129	%	287	681			
_	1	17	1.739	% 📃	13	766			demanding their fair share
_	1	205	20.859	%	151	726	¥	-	(Weight) given the logical
									configuration.
	Capa	city Sum	imary by l	Pool			_		
	CP	Pool	RCPs	Partitions	LCPs	Capacity			
	GP		28	5	37	17,306			2097-E56
	ZAA	AP	1	5	5	694			
	zIIF	P	8	5	8	5,063			Summary with
	IFL		0	0	0	0			this logical
	ICF	-	2	2	2	1,320			configuration
		Total	s 39	17	52	24,383			comgutation
							1		
									© 2010 IBM Corporation

Adv	anced Technical Skills	(ATS) North	America		INE
		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
RMF P	artition Rep	ort			
	CENTRAL STOR	AGE			
		MIN	MAX	AVG	
	AVALLABLE	17 470	10 442	17 040	
	SQA	17,478	18,443	17,840	
	LPA	9,842	9,842	9,642 42 012	
	LCON	43,004	100 050	43,913	
	DECTONG+GWA	1370709	1845902	1658403	
	TOTAL FRAMES	6553600	6553600	6553600	
		F	IXED FRAME	S	
	NUCLEUS	2,629	2,629	2,629	
	SQA	15,528	16,493	15,890	
	LPA	90	90	90	
	CSA	12,187	12,187	12,187	
	LSQA	65 , 380	67,270	66,451	
	REGIONS+SWA	60,380	73,810	61,791	
	BELOW 16 MEG	76	98	78	
	BETWEEN 16M-2G	38,193	39,699	39,097	
	TOTAL FRAMES	157,643	170,842	159,039	
	Contraction of the local division of the loc	-			© 2010 IBM Corporation

Advanced Technical Skills (ATS) North America	GKWE
Simulation	Thinking Monory
Pre-built packages are slower to	
solve and can be relatively easy to use.	
☐ Flow is statistically driven and	
usually predefined but can be	
Customized. (Application modeling.)	
□ Accuracy : □ Utilization within 5%	
□ Response times within 30%	
Data acquisition is key.	
Calibration can be tough.	
Custom models are build from	
service center building blocks.	
Simulation languages do exist.	
Specialized staff.	
Services exist.	
	© 2010 IBM Corporation

Advanced Technical Skills (ATS) North America	
Bibliography - I	
 The Art of Computer Systems Performance Analysis, by Raj Jain, Wiley. I like this It is thorough and complete. A very good reference. Capacity Planning for Web Performance, by Daniel A. Menasce and Virgilio A.F. Almeida, Prentice Hall. A good book on network structure and terminology and introduct to the topic. Probability, Statistics, and Queuing Theory, by Arnold O. Allen, Academic Press Inc. T is the classic in queuing theory. Performance by Design: computer capacity planning by example. By Daniel A. Menasc Virgilio A. F. Almeida, and L. W. Dowdy. The web site http://cs.gmu.edu/~menasce/perfbyd/ has a lot of .xls modeling worksheets. MVS I/O Subsystems, by Gilbert E. Houtekamer and H. Pat Artis, Performance Assoc More than you want to know about the I/O subsystem. A definitive source but is a little of date. Is available from Intellimagic or perfassoc.com. Exploring IBM S/390 Computers, by Jim Hoskins and George Coleman, Maximum Print Press Page 10, 2000 	one. uction l'his scé, siates. e out ess.
A general introduction to Sisso hardware and architecture. (with Ibin G326-3006-06) Statistical Concepts and Methods, by Gouri Bhattacharyya and Richard A. Johnson, J Wiley & Sons. The Practical Performance Analyst, by Neil J. Gunther, Authors Choice Press. A very book	ohn good
Almost any volume of the Computer Measurement Group (CMG) Proceedings is wor looking at for performance and capacity planning articles. Web Site: http://www.cmg.org/measureit/	ίh
	M Corporation

Advanced Technical Skills (ATS) North America	ĒĻ
Bibliography - II	
GC28-1761 MVS [™] Planning: Workload Management. A guide to WLM. SC28-1950 Resource Measurement Facility Report Analysis. A guide to report reading. SC28-1951 Resource Measurement Facility Performance Management Guide. A good tutorial to get started.	
SG24-5975 IBM zSeries 900 Technical Guide. A good hardware architecture and implementation Red Book.	
LY28-1042 RMF™ Support for LPAR Management Time. Want to know how LPAR works?	
SC28-1187 Large Systems Performance Reference by John Fitch. John goes into detail about the LSPR data.	
Parallel Sysplex RMF reports and data. SG24-4680 System/390 MVS Parallel Sysplex Capacity Planning . A good Red Book on	
the function and capacity of Parallel Sysplex.	
A great URL for z/Series documents in general: http://www-1.ibm.com/servers/eserver/zseries/zos/bkserv/ RMF in particular:	
http://www-1.ibm.com/servers/eserver/zseries/zos/bkserv/r4pdf/rmf.html For zPCR,	
search www.ibm.com for "zPCR" & "SoftCap"	
© 2010 IBM Corpo	oration

Advanced Technical Skills (ATS) North America	IBM
Bibliography - III EXCEL: Applied Statistics For Engineers and Scientists Using Excel and MINIT David Levine, Patricia Ramsey, Robert Smidt, Prentice Hall. This come CD containing handy Excel Add-Ins. Excel Data Analysis by Jinjier Simon, Wiley. Nice basic reference con on data presentation.	<i>TAB</i> , by es with a icentrating
Other Good Stuff: <i>The Black Swan: The Impact of the Highly Improbable</i> , by Nassim Nicl Taleb, Random House. This is an informative and entertaining approar statistical analysis among other things.	holas ch to
Statistics as Principled Argument, Robert Abelson, Erlbaum Assoc. Pu 1995. Go good discussion of the use of statistics without the ugly form	ublishers, Julae.
<i>Judgment under uncertainty: Heuristics and biases</i> , Kahneman, Slovic Tversky, Cambridge University Press. The first chapter alone is worth It's a summary of the pitfalls with intuitive thinking.	;, & reading.
	© 2010 IBM Corporation

